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RADON TRANSFORM ON GRAPHS
AND ADMISSIBLE COMPLEXES !

S. V. Koltsova, V. F. Molchanov
G. R. Derzhavin Tambov State University, Russia

Integral geometry on finite sets arises as a natural analogy of classical integral geometry —
in the sense of Gelfand, see, for example, [3], [4], [5]. On one hand, it is a part of combinatorial
analysis and, on the other hand, its ideas, problems, constructions etc. are taken from classical
integral geometry. Possibly, first works on finite integral geometry were papers by Bolker,
see, for example, [1], [2]. They considered the Radon transform in vector spaces over finite
fields.

In this paper we study the Radon transform R on graphs. It assigns to a function f
defined on vertices of a graph G its "integrals” over edges, i.e. a function Rf defined on
edges whose value at an edge z is equal to the sum of values of f at ends of this edge.

We describe the kernel and the image of the transform R and write the inversion formula
in the case when this transform is injective.

Further, we consider complezes in the graph G. Let the graph G have n vertices. A
complex is a subgraph of G having n vertices and n edges. We give a characterization of
admissible complexes, i.e. such that the restriction of the transform R to them is injective.

In classical integral geometry the notions of a complex and an admissible complex were
introduced by Gelfand and Graev [3], [4], [5]. The study of complexes in C"*, R™ and their
applications was the subject of investigations for one of the authors of this paper (K), see,
for example, [7], [8].

1 Preliminaries

In this Section we recall some facts from graph theory, here we rely on [6], and give some
constructions.

A graph G consists from a finite nonempty set V' of vertices and a set X of 2-subsets of
V called edges. We write G = (V, X). Thus, an edge z € X is an unordered pair of different
vertices u,v € V. One says that the edge z joins u and v and in this case we write z = uv.
Therefore, we deal with the so-called simple graphs: no loops and no multiple edges.

A subgraph of the graph G = (V, X) is a graph G' = (V', X’) such that V' C V, X' C X.

Let @' = (V', X"), G" = (V", X") be two subgraphs of the graph G. The union G' UG" is
the subgraph (V' UV”, X’ U X"), the intersection G'NG" is the subgraph (V' NV", X'NnX").

A sequence A in a graph G is a sequence of vertices and edges:

U=170,T1,V1,T25-.-,Un-1,Tm,VUm =V (11)
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such that z; = v;_1v;,7 = 1,...,m. We say that the sequence A connects the vertices u and
v. The number m is called the length of the sequence, we denote it £(A). The vertices vy and
v, are called the initial point (the beginning) and the end of the sequence A respectively.

Let us have two sequences: a sequence A going from u to v and a sequence B going from
v to w. We call by the sum of the sequences A and B the sequence A + B going from u to
w by vertices and edges of the sequences A and B.

For the sequence A going from u to v, see (1.1), we call the opposite sequence and denote
by (—A) the sequence running vertices and edges (1.1) in reverse order from v to u, i.e. the
sequence

V=VUn,TmyVm—-1y..-,V1,L1,00 = U.

If the beginning and the end of a sequence coincide, then the sequence is called the closed
sequence. If all vertices of a a sequence are distinct (except perhaps the first and the last),
then this sequence is called a path. If the beginning and the end of a path coincide, then this
path is called a closed path.

Let C be the closed path (1.1). We define a simple circuit (the circuit for brevity) to
be the subgraph (not sequence !) Z of the graph G, consisting of vertices v; and edges x;
occuring in (1.1). The length of a circuit is the number of edges in it.

A graph is called connected if any its vertices may be connected by a sequence. An arbi-
trary graph is the disjunct union of its connected components, maximal connected subgraphs
of this graph.

The distance d(u, v) between the vertices u, v is the length of the shortest path connecting
u with v. The distance is a metric.

For the vertices u and v, consider some shortest path connecting © and v and denote by
[u,v] the subgraph consisting of vertices and edges of this path. We call this subgraph the
segment connecting v with v. The segment connecting v with v is defined not uniquely.

Let G be a graph (V, X), let V and X have n and r elements respectively. The number

x(G)=n-—r

is called the Euler characteristic of the graph G.
Let a graph G have s connected components. Then x(G) < s, so that for a connected
graph G we have
x(G) < 1.

A connected graph without circuits is called a tree. A connected graph G is a tree if and
only if

x(G) =1. (1.2)

Let u, v, w be three distinct vertices of the graph G. Let us call the subgraph T' =

[u,v] U [v,u] U [u,w] the triangle with the vertices u, v, w. The triangle is defined not
uniquely. But the perimeter of this triangle, i.e. the number

p(T) = p(u, v, w) = d(u,v) + d(v,w) + d(u, w), (1.3)

is well-defined.

Let M be a finite set. By |M| we denote the number of elements of this set. Denote
by L(M) the space of functions on M with the values in C. The inner product of functions
f,g € L(M) is the number

(f,9) = 3 f(@)g(a)-

TeM
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The delta function d,(z) concentrated at a point a € M is the following function from

L(M):
l, z=ua,
() = {0, z # a.

All delta functions 0,4, a € M, form a basis in L(M).
For the sequence A in the graph G = (V, X) given by (1.1), we introduce the following
function from L(X) (”alternating delta function”):

m

ealz) =) (-1)""bs,(2).

i=1

2 Radon transform on graphs

Let G = (V, X) be a graph with n vertices and r edges.

We call the Radon transform on the graph G the operator R : L(V) — L(X) that to each
function f € L(V) assigns the function Rf € L(X) whose value at an edge z = uv is equal
to the sum of values of the function f at the vertices u, v of this edge (an ”integral” of the
function f over the edge z):

(Rf)(z) = f(u) + f(v), z=uv. (2.1)

The Radon transform on a graph G commutes with the restriction to its subgraphs.
Namely, let @' = (V’/, X") be a subgraph of the graph G, let R’ be the Radon transform on
G'. Denote by f' and ¢’ the restrictions of functions f € L(V) and ¢ € L(V) to V' and X'
respectively. Then

R'f' = (Rf)'.
Therefore, we may denote for brevity the Radon transforms on a graph G and on its subgraphs
by the same letter R.

We want to describe the kernel Ker R and the image Im R of the operator R. In particular,
we want to know, when Ker R = {0}, i.e. R is injective, and, if so, to write the inversion
formula.

For that it is sufficient to consider that the graph G is connected.

One of tools is the inner product of functions Rf and 4. Let a sequence A of the length
¢(A) connect the vertex u with the vertex v, see (1.1). The inner product of the function Rf
and the function €4 is equal to

(Rf,ea) = Y (-1 H(RS)(x:). (22)
=1
Lemma 2.1 We have
(Rf,e) = f(w) = (1D f(v). (2:3)
In particular, let A be a closed sequence. If its length is even, then
(Rf7 EA) = 0’ (24)

and if its length is odd, then
(Rf,ea) = 2f(u). (2.5)
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Proof. In virtue of (2.1) the values of the function f at vertices between u and v in the
sum (2.2) are annihilated. [

Lemma 2.2 If the graph G is connected, then the dimension of the kernel Ker R is not
greater than one:
dimKer R < 1. (2.6)

Proof. Let f € Ker R. Fix a vertex v € G. Then at adjacent vertices u, i.e. such that
d(u,v) = 1, the function f must have the value (—f(v)), so that f(u) = —f(v) for d(u,v) = 1.
For an arbitrary u € G, we obtain by iteration:

f(w) = (~1)%) £ (v). (2.7)

Therefore, values of the function f at the vertices u € G are completely defined by its value
at a fixed vertex. O

We say that a connected graph G has class ¢ =0 or ¢ = 1, if dim Ker R = c.
If ¢ = 0, then the operator R is injective.

Theorem 2.3 A connected graph G has class 0 (i.e. R is injective), if and only if there
ezists a triangle in the graph G with odd perimeter. A connected graph G has class 1, if and
only if each triangle in the graph G has even perimeter.

Proof. Let f € Ker R. Fix a vertex v. The values of f at vertices u are given by formula
(2.7). These values must not depend upon the choice of the initial point v. Let us take some
other initial point w. Then, according to (2.7), we have

f@) = (D)™ f(w)
(—1) % (—1) f (v). (2.8)

Comparing (2.7) and (2.8), we obtain, that f can be not zero if and only if
d(u,v) = d(u, w) + d(v, w),
here and further the sign = denotes the congruence modulo 2. Therefore,
d(u,v) + d(u,w) + d(v,w) =0,
which means that the perimeter of a triangle with the vertices u, v, w is even. U

In particular, in a tree each triangle has an even perimeter, so that a tree has class 1, the
operator R on it is not injective.

Theorem 2.4 A connected graph G has class 0 (i.e. the operator R is injective), if and only
if there exists a circuit in the graph G of odd length. A connected graph G has class 1 if and
only if each circuit in the graph G has even length.

44
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Proof. Let a connected graph G have a circuit Z of odd length with consecutive vertices
V1,V2,...,V2k+1. Consider 2k — 1 triangles T1,T5,...,To—1: a triangle T; has the vertices
V1, Vi+1, Vi+2. The perimeter p; of the triangle T; is

pi = d(v1,vi41) + 1+ d(v1, vig2). (2.9)
Let us summarize (2.9) over ¢ =1,...,2k — 1. We obtain
Prt...+pk-1 = d(vi,v2)+2[d(v1,v3) + ...+ d(v1,ver)] + d(v1,vo841) + 2k — 1

= 2k+1+ 2[d(’l)1,’l)3) T s +d(’l)1,’l)2k)].

From this we have
pr+...+p-1=1.

Hence, at least one of the triangles T; has odd perimeter. By Theorem 2.3 we obtain ¢ = 0.
Inversely, let a connected graph G contain a triangle T' with vertices u, v, w having odd
perimeter p, i.e.

p=1, (2.10)

see (1.3). Let us construct a circuit Z with odd length.
Condition (2.10) implies that the intersection of three segments [u,v], [v,w], [u,w] is
empty. Indeed, if this intersection contains a vertex a, then

d(u,v) = d(u,a) + d(a,v),

Summarizing, we obtain that the perimeter p is equal to
2[d(u, a) + d(v,a) + d(w,a)],

hence is even. It contradicts to (2.10).

Let 4 be a vertex in the intersection [u, v]N[u, w], the most distant from u (it may coincide
with ). Similarly we define vertices v' = [u,v] N [v,w] and w' = [u, w] N [v,w]. All vertices
o', v', w' are different, since the intersection [u,v] N [v,w] N [u,w] is empty. Let segments
[u,2], [v',w'], [u',w'] be parts of the segments [u,v], [v,w], [u,w], respectively. The union Z
of these segments (it is the triangle) is a circuit (since [u/,v'] and [v/,w'] intersect only at one
vertex v’ etc.).

The lengths of these segments are as follows:

Summarizing, we obtain, that the perimeter p’ of the triangle Z is
P =p—2[d(u,u) + d(v,v") + d(w, w')].

Hence, p' = p, so that p’ = 1, which means that the length of the circuit Z is odd. I
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Let us write the inversion formula for the Radon transform in the case ¢ = 0. In this
case a connected graph G contains a circuit Z of an odd length (Theorem 2.4). Let us take
an arbitrary vertex u in the graph G. Let us consider the following closed sequence A, that
begins and ends at the vertex u. Let P be a sequence going from the vertex u to some vertex
v € Z (such sequence can be absent, if u € Z). Let C be a closed path going along the circuit
Z from the vertex v to v itself. Its length £(C) is equal to the length £(Z), hence is odd. We
set A= P + C — P. The length of the sequence A is equal to

¢(A) = £(P) + £(C) + £(P) = £(C) + 2¢(P),

so is odd. By formula (2.5) we obtain

flu) = 5(Rf,en)

Remark. Formula (2.3) is a kind of "the Newton-Leibniz formula”, therefore, the Radon
transform R is a kind of ”differentiation” (inspite of the fact that it was defined as an
”integral”). Let ¢ € Im R, let f be its ”primitive”, i.e. such a function that Rf = ¢. Fix
a vertex v € G. Then the value of the function f at an arbitrary vertex u is given by the
formula (see (2.3)):

fw) = (Rf,ea) + (—1)! ™ f(v),

where A is a sequence going from the vertex v to the vertex wu.
For ¢ = 1 the value f(v) may be arbitrary, so that f is defined up to a function in Ker R
(”constants”), and for ¢ = 0 the value of f(v) is defined uniquely.

3 The image of the Radon transform

Let G = (V, X) be a connected graph with n vertices and r edges. It has class ¢ = 0,1,
see Section 2. The image Im R C L(X) of the Radon transform has dimension n —c. We
want to describe the subspace Im R in L(X). For that, it is sufficient to give the description
of the kernel Ker R* of the conjugate operator R*.

This operator R* is defined by the condition

(Rf,¢) = (f, R*), (3.1)
where f € L(V), ¢ € L(X) and the inner products are taken in L(V) and L(X). It acts by

the formula:
(Bo)w) = 3 p(a).

uUET

It follows from (3.1) that Im R is the orthogonal complement to the kernel Ker R* in
L(X). This kernel KerR* has dimension

dimKer R* = —x(G) +c, (3.2)

where, recall, x(G) is the Euler characteristic (x(G) = n — r) of the graph G. Indeed, this
dimension is equal tor — (n —¢) = —(n —7) +c.
Let us show some functions in Ker R*.

46
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Each circuit Z of even length gives a function ¢ in Ker R*, namely, let C be a closed path
passing along Z, then ¢ = e¢. Indeed, by (2.4) ec is orthogonal to Im R.

Each pair of different circuits Z and W of odd length generates a function 1 in Ker R* in
the following way. Let C be a closed path passing along Z from a vertex u € Z to itself and
D a closed path passing along W from a vertex v € W to itself. Lengths £(C) and ¢(D) are
odd. Let P be a sequence going from the vertex u to the vertex v. Let us consider the closed
sequence A = C'+ P+ D — P going from u to u. Its length £(A) is equal to £(C)+4(D)+2¢(P),
so is even. We set 9 = e4.

Now we present a basis in Ker R*.

First we construct a family of circuits in the graph G.

Let Z; be some circuit in the graph G. Remove some edge of Z; from G. We obtain
the connected graph Gy, it has n vertices and r — 1 edges, so that its Euler characteristic is
X(G) + 1. Let us take in G some circuit Z5 and remove an edge of Z5 from G;. We obtain
the connected graph G with Euler characteristic x(G)+2 and so on. After k steps we obtain
the connected graph G with Euler characteristic x(G) + k, which contains no circuits, i.e.
Gy is a tree. By (1.5) we obtain x(G) + k = 1, whence

k=—-x(G)+1. (3.3)
Let us call these circuits Zi, ..., Z; basis circuits. This family of circuits contains p circuits
of even length and g circuits of odd length, p + ¢ = k, p,q=0.

Let ¢ = 0. Then all the circuits Zi,..., Z; have even length, each of them produces a
function in Ker R*, see above. We obtain functions ®1,...,¢k in Ker R*. They are linearly
independent, therefore,

k < dimKer R*. (3.4)

On the other hand, comparing (3.2) and (3.3) we see:
k—dimKerR*=1—c,
and by (3.4) and (2.6) we have
0>k—dimKerR*=1-¢ >0,

whence ¢ = 1 and k = dim Ker R*. Therefore, the functions ®1,- .., form a basis in Ker R*.

Let ¢ > 1. Then ¢ = 0. Let Z,..., Z, be all basis circuits of odd length. Consider q — 1
pairs of circuits: (Z1,Z3),...,(Z1, Z,). These pairs produce g — 1 functions Y1y Pgq-1 in
Ker R*, as it was pointed above. The remained p circuits of even length give p functions
¥1,...,9p in Ker R*, see above. Altogether we obtain ¢q—1+p =k—1, i.e. —x(G), functions
in Ker R*. They are linearly independent. In virtue of (3.2) they form a basis in Ker R*.

The bases in Ker R*, just constructed, give relations for functions in Im R. These relations
have the form

(Rf1 E':A) = Oa

where A is a closed sequence constructed as it was said above either by a circuit of even
length or by a pair of circuits of odd length.
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4 Admissible complexes

Let G = (V,X) be a graph with n vertices and r edges, let n < r, so x(G) < 0.

By analogy with [4], [5] we define a complez in the graph G to be a subgraph K of G
which has n vertices and n edges. Therefore, K = (V,Y), where Y C X and x(K) = 0.

By analogy with [4], [5] again, we call a complex K admissible, if the Radon transform R :
L(V) — L(Y) on K is injective, therefore, the Radon transform R on K is an isomorphism.

Notice that any connected component of an admissible complex can not be a tree.

Theorem 4.1 A complex K is admissible if and only if each connected component of K has
a unique circuit and this circuit has odd length.

Proof. Let each connected K; component of K have a circuit of odd length. Then by
Theorem 2.4 the Radon transform R on Kj is injective, therefore, the Radon transform R on
K is also injective, so that K is admissible.

Now let a complex K of the graph G be admissible. Let Kji,..., K, be its connected
components. Denote by n; the number of vertices of K;. For each K; the Radon transform
R on K; is injective, hence K; is not a tree, so that x(K;) < 0. Since x(K) = 0, we have

x(K1) + ...+ x(Ks) =0.

Hence, x(K;) = 0 for all ¢ = 1,...,s. Therefore, the number of edges in the graph K; is
equal to n; too. Let Z; be some circuit in K;. Remove from K; one edge of Z;. We obtain
a connected graph K| with n; vertices and n; — 1 edges, so x(Kj) = 1, so that K] is a tree.
Therefore, Z; is a single circuit in K;. By Theorem 2.4 this circuit Z; has odd length. O
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